
BAYESIAN STATISTICS 7, pp. 000–000
J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid,
D. Heckerman, A. F. M. Smith and M. West (Eds.)
c© Oxford University Press, 2003

Markov chain Monte Carlo-based approaches
for inference in computationally

intensive inverse problems

DAVE HIGDON
Los Alamos National Laboratory and Duke University

dhigdon@lanl.gov

HERBIE LEE
Duke University

herbie@stat.duke.edu

CHRIS HOLLOMAN
Duke University

chris@stat.duke.edu

SUMMARY

A typical setup for many inverse problems is that one wishes to update beliefs about a spatially
dependent set of inputs x given rather indirect observations y. Here, the inputs and observed
outputs are related by the complex physical relationship y = ζ(x) + ε. Applications include
medical and geological tomography, hydrology, and the modeling of physical and biological sys-
tems. We consider applications where the physical relationship ζ(x) can be well approximated
by detailed simulation code η(x).

When the forward simulation code η(x) is sufficiently fast, Bayesian inference can, in
principle, be carried out via Markov chain Monte Carlo (MCMC). Difficulties arise for two
main reasons:

• Even though the code may accurately represent the physical process, there are a large
number of unknown, but required, inputs that must be calibrated to match the observed
data y.

• The computational burden of the fastest available forward simulators is often large enough
that approaches for speeding up the MCMC calculations are required.

This paper develops approaches for specifying effective low-dimensional representations of the
inputs x along with MCMC approaches for sampling the posterior distribution. In particular
we consider augmenting the basic formulation with fast, possibly coarsened, formulations to
improve MCMC performance. This approach can be very easily implemented in a parallel
computing environment. We give examples in single photon emission computed tomography
and in hydrology.

Keywords: MULTIGRID MARKOV CHAIN MONTE CARLO, METROPOLIS COUPLED MARKOV

CHAIN MONTE CARLO, SPATIAL STATISTICS, DISTRIBUTED COMPUTING.
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1. INTRODUCTION

A typical setup for many inverse problems is that one wishes to update beliefs about
a spatially dependent set of inputs x given indirect observations y = (y1, . . . , yn)T .
Here the inputs and observed outputs are related by the complex physical relationship
y = ζ(x) + ε where ζ(x) denotes the actual physical system at the true, but unknown
state x = (x1, . . . , xm), and ε denotes sampling error. Many such systems can be
approximated by detailed computer simulation code η(x). A very incomplete list of
applications includes medical tomography (Weir, 1997), geological tomography (An-
dersen et al. 2001), hydrology (Lee et al. 2002), petroleum engineering (Hegstad and
Omre 2001: Craig et al. 2001), as well as a host of other physical, biological, or social
systems. The observed data

y = ζ(x) + ε

are modeled statistically by
y = η(x) + e

where the discrepancy term e accounts for both sampling error and mismatch between
the simulator η(x) and reality ζ(x):

e = ζ(x) − η(x) + ε.

The goal is to use the observed data y to make inference about the spatial input
parameters x – in particular, to characterize the uncertainty about x.

The likelihood L(y|x, θy), which may depend on additional parameters held in θy, is
then specified to account for both mismatch and sampling error. It is worth noting here
that the data come only from a single experiment. So there is no opportunity to obtain
data from additional experiments for which some controlable inputs have been varied.
Because of this, there is little hope of modeling the mismatch term ζ(x)−η(x) separately
from the sampling error as is often done in the statistical analysis of complex computer
code outputs (Kennedy and O’Hagan, 2001). Therefore, the likelihood specification will
often need to be done with some care, incorporating the modeler’s judgement about
the appropriate size and nature of the mismatch term.

We consider systems for which the model input paramaters x denote a spatial field
or image. For example, in single photon emission computed tomography (SPECT) the
image intensity x denotes blood flow within a region of the body; in a hydrologic appli-
cation, x might give the spatial distribution of hydraulic conductivities or permeability.
The simulator requires gridded inputs and the resolution of the grid is a pre-specified
input to the simulator. The spatial prior for x, π(x|θx), will typically include an ad-
ditional parameter vector θx to control x. The parameter θx may then be treated as
fixed or have a prior of its own π(θx). Both modeling and computing considerations go
into specification of π(x|θx), which is discussed in the following section.

The resulting posterior is then given by

π(x, θ) ∝ L(y|η(x), θy) × π(x|θx) × π(θ)

where θ holds both nuisance parameters (θy, θx), This posterior can, in principle, be
explored via Markov chain Monte Carlo (MCMC). However the combined effects of the
high dimensionality of x and the computational demands of the simulator make imple-
mentation difficult in practice. By itself, the high dimensionality of x isn’t necessarily
a problem. MCMC with single-site updating has been carried out with relative ease
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in large image applications. However, a high dimensional input vector x does make it
quite difficult to build any sort of statistical model η̂(x) to approximate the simulator
as in Sacks et al. (1989) or Kennedy and O’Hagan (2001). Any MCMC implementation
using a single-site updating scheme is impractical since it will require m forward runs
for a single update scan through all the parameters. In addition, a simulator may re-
quire a fine grid to ensure satisfactory numerical performance, but the numerical error
may unduly affect the small changes in output y when only a single component of x has
been updated. The use of higher dimensional proposals has proven somewhat successful
(Oliver et al. 1997; Lee et al. 2002), especially when some direct measurements on x
are available as in Hegstad and Omre (2001). A similar strategy that we have found
effective is to reparameterize x; this is discussed in Section 2.

To deal with the computational burden of the forward simulator η(x), Section 3
lays out a Metropolis coupled MCMC (Geyer, 1991) implementation that simultane-
ously runs chains to sample multiple posterior formulations π(x1, θ1), . . . , π(xK, θK)
for which the spatial input parameters x1, . . . , xK are coarsened to varying degrees.
Each formulation runs its simulator ηk(xk) at its own particular grid resolution. This
MCMC scheme, which borrows from the work of Goodman and Sokal (1989) and Liu
and Sabatti (1999), allows information from the faster running, but less accurate, coarse
formulations to speed up the mixing for the fine scale chains. In addition, this scheme is
relatively easy to implement on a parallel environment, without having to “parallelize”
the actual simulator code. This distributed, coupled MCMC approach is discussed in
Section 3. Section 4 follows giving a final discussion.

2. SPATIAL REPRESENTATIONS

The simulator typically requires that x be input over m regular grid points at spa-
tial locations denoted by the set sx = {sx

1 , . . . , s
x
m}, which is contained in the spatial

domain S. Hence the actual input to η(·) requires x be restricted to the grid points
xsx = (x(sx

1), . . . , x(sx
m))T . As regards to notation, we use x when the process is only

considered at the set of spatial locations sx; we take x(s) to mean that the process is
defined for all s ∈ S. The grid size m can often be specified in the simulator η(x),
with fine grids typically giving more accurate results at the cost of increased computa-
tion. We note that recent literature has stressed the importance of specifying spatial
models that are consistent under coarsening or aggregation schemes. Clearly, the single
component xsx

i
of the input grid x is some form of aggregate of a continuously defined

process in the neighborhood of the location sx
i . However, in many applications involving

simulation of physical systems, aggregation – equivalently, upscaling or closure – is a
difficult, or even an ill-posed task by itself. So, even though issues regarding aggreation
consistency can play an important role, especially when the aggregation process is well
defined and data are sufficiently informative, the data are usually insufficient to resolve
x in much detail in the applications we consider. Hence we only require that the prior
distribution for x infuse prior knowledge about its spatial distribution – at least at
the resolution/level of detail that we expect from the data – as well as regularize the
posterior for x.

In this paper we use both intrinsic Gaussian Markov random fields (MRFs) that
model the m-dimensional process x at the spatial locations sx, and standard Gaussian
processes (GP) that define a process x(s) over continuous space. The intrinsic Gaussian
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MRF has the form
π(x|θx) ∝ θ

m
2 exp

{

−1
2 θxTWx

}

(1)

where θx controls the scale of x and the MRF precision matrix has the simple form

Wij =







ni if i = j

−1 if i ∼ j

0 otherwise

(2)

where ni is the number of neighbors of site sx
i and i ∼ j means locations sx

i and sx
j are

neighbors of one another. With the regular grids considered in this paper, we specify
two sites sx

i and sx
j to be neighbors if they are directly adjacent on the grid so that

interior points of a 2-d rectangular grid have 4 neighbors; edge sites have 3; and corner
sites have 2.

Gaussian process priors are typically specified through their mean and covariance
function. We take the mean to be constant and define the covariance by

Cov(x(sx
i ), x(sx

j )) = θ1ρ

(

‖sx
i − sx

j ‖

θ2

)

where the correlation function ρ(·) must be positive definite and satisfy ρ(0) = 1. We

typically take ρ(d) = e−d2
which leads to very smooth realizations for x(s). By contrast,

realizations under the locally planar MRF model (2) exhibit local roughness.
This distinction is important if one wishes to infer about the local nature of x and

if the data are informative about the small scale nature of x. It is often the case in
inverse problems that the indirectly observed data give no information regarding the
small-scale behavior of x. Also, the input grid x can best be regarded as the aggregate
of an underlying continuous process. For the two reasons above it is often impossible
to distinguish between locally smooth and locally rough character of x(s) from the
data alone. When this is the case, as it is in the hydrology examples, computational
considerations can lead us to favor models with smooth local behavior.

When we can get away with a smooth GP specification for x(s), we can then effi-
ciently represent x(s) by convolving a white noise process u(s), s ∈ S with a smoothing
kernel k(s) so that

x(s) =

∫

S
k(ν − s)u(ν)dν for s ∈ S. (3)

The resulting covariance function for x(s) depends on the displacement vector d = s−s′

and is given by

Cov(x(s), x(s′)) ∝ ρ(d) ∝

∫

S
k(ν − s)k(ν − s′)dν =

∫

S
k(ν − d)k(ν)dν. (4)

The proportionality depends on the scale of the white noise process u(s) and on
∫

S k2(ν)dν. We typically take S to be R1,2, or 3, and k(·) to be a normal density
with independence between the coordinate component directions. This is an equivalent

representation of a mean 0 GP with ρ(d) = e−d2
, possibly after rescaling the coordinate

axes. By restricting the latent process u(s) to coarse lattice locations su
1 , . . . , s

u
` , a small

number of parameters effectively control the entire process x(s). Now with a discrete
white noise process

u = (u(su
1 , . . . , u(su

` ))
T ∼ N(0, I`/θu)
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x(s) can be represented by the discrete analog of (3)

x(s) =
∑̀

k=1

ukk(s − su
k) (5)

where k(·−su
k) is the smoothing kernel centered at su

k. Figure 1 shows three successively
coarsened white noise realizations u, their induced processes x(s) from convolving u
with the kernel shown in the upper left of the top row of figures; the bottom row
of figures shows Cor(x(s0), x(s)) as a function of s. The dotted black line gives the
ideal covariance function obtained via (4). For this smooth process, u can undergo
substantial coarsening before the induced process begins to substantially deviate from
the ideal one obtained from continuous white noise.
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Figure 1. A stationary spatial process x(s) can be generated by smoothing white noise. The
top frames the induced process x(s) obtained by smoothing the white noise shown by vertical lines
using the kernel shown in the top left of the figure. Moving from left to right, the underlying
white noise process becomes successively coarser. Below each of the top frames is a function
showing Cov(x(s0), x(s)) as a function of s; the location of s0 is marked in the figures. In
the rightmost frame the uk’s are so sparse that the covariance of the induced process begins to
deviate from the ideal covariance function it is trying to match, which is shown by the black
dotted line.

Before moving on, we note there are alternative lower dimensional representations
of x(s) that one may consider such as Cholesky, SVD, or Fourier. Taking x to be
discrete, in each case we can express x = Ku so that x is the weighted sum of bases
given by the columns of K. The difference between the approaches is in the specification
of K. We favor the moving average representation because of its local nature as well as
the simplicity of its basis representation. Its local nature meshes well with MCMC in
which a simple Metropolis update of individual uk will influence a local region of x(s).
The simplicity of this basis representation easily allows for extending the basic model
for which u ∼ N(0, I`/θu). By allowing more general dependence within u the model
can be extended to account for non-stationarity or time dependence; see Calder et al.
(2002) for example.
Example 1. Studying the flow of water underground is of great interest to engineers,
with important applications to cleanup of contaminated soil and petroleum exploration
and production. A statistically interesting component of this problem is the inverse
problem of inferring soil structure (e.g., permeability) from flow data. Further details
and references can be found in Lee et al. (2002).

The data presented here are from a larger study (Annable et al. 1998) at the Hill
Air Force Base in Utah where the ground contains a number of contaminants. We
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look only at conservative tracer data, an experiment that yields information only on
the permeabilities and not on the contamination. The site is 14 feet by 11 feet, with
four injection wells along one edge and three production (extraction) wells along the
opposite edge. Water is pumped continuously through the field, and then a tracer is
added and the time of travel is measured for the tracer from the injection wells to five
measurements sites (sampling wells) in the field. This time of travel is referred to as the
breakthrough time for each sampling location. Since water flows faster through regions
of higher permeability, one can learn about the underlying permeabilities through the
breakthrough times. The upper left plot of Figure 2 shows the locations of the injectors,
producers, and samplers, with the breakthrough times shown for the sampling locations.

Well Data
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Figure 2. Layout of wells, posterior realizations, and posterior means for both an MRF model
and a moving average Gaussian Process model for the Hill Air Force Base data. In the upper left
plot, the wells are labeled “I” for injectors, “P” for producers, and the samplers are shown with
numbers where the value is the breakthrough time (in days) for each well. For the permeability
plots, darker regions correspond to higher permeability values.

Permeabilities vary spatially and are typically considered to be log-normally dis-
tributed. Thus all our priors for permeabilities are stated on the log scale. We use a
42 by 33 grid of square cells, one-third of a foot on each side. For notational conve-
nience, we represent the unknown (log) permeabilities as a m = 42 × 33 × 1 lattice x.
Conditional on a specified permeability field x, the breakthrough times are found from
the solution of differential equations given by physical laws, i.e., conservation of mass,
Darcy’s Law, and Fick’s Law. We do this using the S3D streamtube computer code of
King and Datta-Gupta (1998) and find the n = 5 fitted breakthrough times, ŷ = η(x).

We consider two formulations – one for which x is modeled as a 2-d MRF prior using
four nearest neighbors on a m = 42 × 33 lattice; and one for which x is parameterized
as a GP via (5), where the ` = 72 kernel locations are shown by the dots in the bottom
left frame of Figure 2 and the kernels are bivariate normal with a one sd ellipse shown
in the bottom left frame of Figure 2. The resulting posteriors are

π(x, θx|y) ∝ exp{−1
2 λ(y − η(x))T (y − η(x))} × θ

−m
2

x exp{−1
2 θxx

T Wx} × θαx−1e−βxθ

π(u, θu|y) ∝ exp{−1
2 λ(y − η(x))T (y − η(x))} × θ

− `
2

u exp{−1
2 θuu

T u} × θαu−1
u e−βuθu.
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In the MCMC implementations, x is updated via multivariate Hastings steps (Lee et
al. 2002) and u is updated via single site Metropolis steps.

Figure 2 shows the results from the two formulations. The top row shows two
realizations from the posterior and the posterior mean for the MRF prior, while the
bottom row shows analogous plots for the GP prior. Both models fit the observed data
well. In particular, both show a region of lower permeability in front of (relative to the
injectors) the central well, which has the latest breakthrough time. �

3 COMPUTATION

3.1 Linking coarse and fine formulations

In many applications, the computational demands of the simulator greatly restrict the
number of simulator runs that can be carried out, making posterior exploration via
standard MCMC difficult or even impractical. An alternative is to formulate a coars-
ened version of the problem. Under this coarse specification, a coarsened counterpart
for the input x is defined by x̃ = (x̃1, . . . , x̃m̃)T = Cx, where C is the coarsening opera-
tion which maps a m-vector to a lower dimensional m̃-vector. We use sx̃ = {sx̃

1 , . . . , s
x̃
m̃}

to denote the spatial locations associated with this coarse grid. Typically, C is a m̃×m
matrix so that Cx is a simple linear transformation, such as averaging or summing
groups of fine-scale pixels to make coarse pixels. However, coarsening, or upscaling,
could conceivably be a more complicated operation, depending on the application. De-
pending on the problem, y, θy, and θx might also require coarsened counterparts ỹ, θ̃ỹ,

and θ̃x̃ which are modifications of their original form. In addition, the likelihood and
priors under the coarsened formulation may also differ. The net result is two separate
posterior distributions – one fine and one coarse:

fine π(x, θ|y) ∝ L(y|η(x), θ)× π(x|θx) × π(θ)

coarse π̃(x̃, θ̃|ỹ) ∝ L̃(ỹ|η(x̃), θ̃) × π̃(x̃|θ̃x̃) × π̃(θ̃).

In order to link the coarse and fine-scale formulations, we make use of Metropolis
coupled MCMC (Geyer, 1991). Now, instead of running two separate MCMC chains,
one on the fine posterior and one on the coarse posterior, a single chain is run on
the product distribution. This coupled chain has stationary distribution π(x, θ|y) ×

π̃(x̃, θ̃|ỹ). Because of the coarsened input x̃ to the simulator, the chain sampling the
coarse-scale posterior will run more quickly. In addition, the coarse-scale posterior
is typically smoother and easier to sample via MCMC as compared to its fine-scale
counterpart. Hence an efficient coupling scheme will allow information to move between
the two formulations.

One possible implementation of such a coupled chain alternates standard within-
scale updates with “swapping” updates that allow information to move between the
two scales as shown below:

(x, θ)1
MCMC
−→ (x, θ)2

(x̃, θ̃)1
MCMC
−→ (x̃, θ̃)2

SWAP
−→

(x, θ)3
MCMC
−→ (x, θ)4

(x̃, θ̃)3
MCMC
−→ (x̃, θ̃)4

SWAP
−→

(x, θ)5 · · ·

(x̃, θ̃)5 · · ·

Here the updates denoted by
MCMC
−→ affect parameters within a given scale, while

the updates denoted by
SWAP
−→ are a Hastings update that proposes new candidates

(x∗, θ∗, x̃∗, θ̃∗) according to the proposal kernel

q((x, θ, x̃, θ̃) → (x∗, θ∗, x̃∗, θ̃∗)),
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which is accepted according to the Hastings rule with probability

1 ∧
π(x∗, θ∗|y)π̃(x̃∗, θ̃∗|ỹ) × q((x∗, θ∗, x̃∗, θ̃∗) → (x, θ, x̃, θ̃))

π(x, θ|y)π̃(x̃, θ̃|ỹ) × q((x, θ, x̃, θ̃) → (x∗, θ∗, x̃∗, θ̃∗))
(6)

where a ∧ b is the minimum of a and b.
We now describe some specific swapping proposals q((x, θ, x̃, θ̃) → (x∗, θ∗, x̃∗, θ̃∗))

for the applications we consider. It is often convenient to break the swapping proposal
kernel into the product

q((x, θ, x̃, θ̃) = q((x, θ) → (x̃∗, θ̃∗)) × q((x̃, θ̃) → (x∗, θ∗))

where q((x, θ) → (x̃∗, θ̃∗)) generates a coarse-scale proposal (x̃∗, θ̃∗) from the current

fine-scale state (x, θ), and the kernel q((x̃, θ̃) → (x∗, θ∗)) generates a fine-scale proposal

(x∗, θ∗) from the current coarse-scale state (x̃, θ̃).

Swapping proposals for MRF priors. When we use the MRF prior for x and x̃ (1), we
generate the coarse-scale proposal by deterministically coarsening the fine-scale state
and then generating a candidate value θ̃∗ by simulating from its full conditional dis-
tribution (under the coarse-scale posterior) given the new proposed value x̃∗. This
proposal kernel can be written

q((x, θ) → (x̃∗, θ̃∗)) = I[x̃∗ = Cx] × π̃(θ̃∗|x̃∗, ỹ)

where I[·] is the indicator function, Cx is the coarsening operation applied to the

fine-scale x, and π̃(θ̃|x̃∗, ỹ) is the full conditional distribution of θ̃ under the coarse

formulation. If θ̃ is given a conjugate Γ(αx, βx) prior, then its full conditional also
has a gamma form. Also for the applications we consider, C is a simple summing or
averaging operation.

The fine-scale candidate (x∗, θ∗) given the current coarse-scale state (x̃, θ̃) is gener-
ated by drawing from the prior distribution π(x∗|θ†) subject to the constraint Cx∗ = x̃.

The value θ† is a deterministic function of θ̃ chosen so that the candidate x∗ most
nearly matches the properties of typical fine-scale realizations. In the 1-d application
of Example 2, we take θ† = 1

8 θ̃; in the 2-d SPECT application of Example 3, we take

θ† = 1
32 θ̃. Once x∗ has been generated, θ∗ can then be drawn from its full conditional

given the candidate value x∗. Hence

q((x̃, θ̃) → (x∗, θ∗)) ∝ π(x∗|θ†, y)I[x̃ = Cx∗] × π(θ∗|x∗, y).

Note that when the prior π(x|θ) has a multivariate normal form and C is a matrix,
then the proposal x∗ can be generated directly. This update is more problematic when
the prior for x is not normal.
Example 2 Before considering swapping updates for formulations involving moving
average specifications for x, we first consider a synthetic blur free, 1-d imaging example.
A smooth, 1-d souce is emitting according to a Poisson process with intensity given by
the smooth, solid line(s) in Figures 3 (a & b). Under the fine-scale formulation of the
problem is a 1-d array of n = 40 detectors recording emissions from the source; the
count for each detector is shown in Figure 1(a). A 1-d Gaussian MRF prior over the
m = 40 detector sites is assigned to the unknown fine-scale image x, with a Γ(α, β) prior
for the precision parameter θx. A coarse-scale formulation is obtained by combining
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Figure 3. Data, posterior realizations, and posterior summary for the coupled MCMC scheme:
(a & b) Data and true image intensity under the fine and coarse formulations; (c & d) a
sequence of four updates under the coupled MCMC scheme; (e & f) pointwise posterior 90%
credible intervals for the image intensities x and x̃ under the fine and coarse formulations.

adjacent detector pairs so that the coarsened data consist of ñ = 20 counts (Figure
1(b)). Similarly, a MRF prior is assigned to the coarsened image x̃, which is divided
into m̃ = 20 sites, one for each coarse detector.

The fine and coarse formulations are given by

fine

L(y|x) ∝
n

∏

i=1

x
yi
i exp{−xi}

π(x|θ) ∝ θ
m
2 exp{−1

2 θxTWx}

π(θ) ∝ θα−1e−βθ

coarse

L̃(ỹ|x̃) ∝

ñ
∏

i=1

x̃
ỹi
i exp{−x̃i}

π̃(x̃|θ̃) ∝ θ̃
m̃
2 exp{−1

2 θ̃x̃TW̃ x̃}

π̃(θ̃) ∝ θ̃α−1e−βθ̃

where W and W̃ are given by (2) and adjacent detectors are defined to be neighbors.

The swapping updates are carried out as described previously, with θ† = 1
8 θ̃. Figures 3

(c & d) show four successive updates from this coupled MCMC scheme. The resulting
posterior pointwise 90% credible intervals are shown in Figures 3 (e & f) under both
the fine and coarse formulations. In this application, the swap proposals were accepted
about 14% of the time. �
Example 3. In SPECT the goal is to estimate a photon emission intensity map using
photon emissions from an object detected by a gamma camera. Figure 4 diagrams the
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information obtained during a SPECT scan. As the object emits photons, the gamma
camera records the locations of photon hits along the camera array. The gamma camera
array can rotate completely around the object. At a given camera position, photon
emissions are recorded as counts at each of 128 bins indexed by b. This accumulation
of counts is repeated at each of 120 rotation angles indexed by angle a.

Figure 4. SPECT: An object emits photons with location dependent intensity x(s). The
gamma camera obtains binned counts of photon emissions from various different positions con-
trolled by the angle a. The counts from each angle a and each bin of the gamma camera b are
recorded as yab.

The data consist of counts yab obtained from bin b of the gamma camera while it
was positioned at angle a. Lead columnators on the camera ensure that photons hit
the camera at nearly right angles. Since a photon may be scattered, absorbed, miss
the gamma camera, or otherwise fail to be detected, the probability map pabi gives the
probability of an emission from pixel i being detected at angle a and bin b.

(a) (c) (e) (g)

(b) (d) (f) (h)

co
ar

se
fin

e

true intensity accepted swap proposal posterior mean

Figure 5. Coupled fine and coarse-scale MCMC for a SPECT example. (a) true emission
intensities; (b) coarsened version of the true intensities; (c & d) current values for x and x̃
during the coupled MCMC run; (e & f) proposed fine and coarse images x∗ and x̃∗ after swapping
an interior patch of the images in (c & d); (g) posterior mean for x; (h) posterior mean for x̃.
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We specify a fine-scale formulation that divides the emission source into a m =
128× 128 lattice of pixels; the coarse-scale formulation divides the emission source into
a m̃ = 64× 64 lattice of pixels. Hence the fine formulation requires a 120× 128× 1282

probability map pabi, and the coarse formulation requires a 120× 128× 642 probability
map p̃abi, The counts yab then have a Poisson distribution with mean λab under the
fine-scale formulation, and mean λ̃ab under the coarse-scale formulation where

λab =
m

∑

i=1

xipabi and λ̃ab =
m̃

∑

i=1

x̃ip̃abi.

Hence computing changes in λab due to changing a component of x requires four times
as much effort as does computing changes in λ̃ab due to changing a component of x̃.

The two formulations can then be written

fine

L(y|x) ∝
∏

a,b

λ
yab
ab exp{−λab}

π(x|θ) ∝ θ
m
2 exp{−1

2 θxTWx}

π(θ) ∝ θα−1e−βθ

coarse

L̃(y|x̃) ∝
∏

a,b

λ̃
yab
ab exp{−λ̃ab}

π̃(x̃|θ̃) ∝ θ̃
m̃
2 exp{−1

2 θ̃x̃TW̃ x̃}

π̃(θ̃) ∝ θ̃α−1e−βθ̃

where W and W̃ are given by (2) with vertically and horizontally adjacent pixels defined
as neighbors. Note that the data are not coarsened in this example. Within-scale
MCMC is carried out as described in Weir (1997).
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Figure 6. A proposal that swaps only a piece of the image between the coarse- and fine-scales.
Given the current values for x and x̃, the shaded regions of the two images are exchanged giving
the intermediate values. The coarse shaded piece is refined to give a fine proposal x∗ and the
fine shaded piece is coarsened to give a coarse proposal x̃∗. The stochastic refining of the coarse
shaded piece conditions on its previous coarse value as well as its neighboring fine-scale pixels.

We originally used swaps as described in Section 3.1. However we found that
the fine-scale proposals were not sufficiently accurate near the edges of the emission
phantom (Figure 5 (a)). Instead we proposed to swap only interior pieces of the fine
and coarse images. Figure 6 shows how this is carried out. To construct the proposal,
the same interior regions of the two images are exchanged. The region within the
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coarse-scale exterior is then deterministically coarsened; the region within the fine-scale
exterior is then refined, conditioned on matching its coarse values and conditioned on
the fine-scale pixels neighboring the region. This gives the proposal a better chance of
being accepted – about one in eight swap proposals are accepted. Figure 5 shows an
accepted swap along with coarse and fine-scale posterior mean images.
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Figure 7. MCMC trace plots and autocorrelation plots for the intensity of an interior pixel
in the SPECT application under the coupled MCMC approach (top row) and standard MCMC
within the fine-scale only (bottom row). The trace plots are standardized to comparable CPU
time. The coupled MCMC is about three times as efficient when standardized to CPU effort.

MCMC trace plots are shown in Figure 7 for an interior pixel under the two posterior
sampling schemes. The coupled MCMC yields estimated autocorrelation times that are
about a third of those obtained under the standard fine-scale MCMC algorithm. �

Swapping proposals for continuous spatial priors.

Coarse scaleFine scale

Figure 8. Deterministic coarsening and refining in the case when x and x̃ are modeled as
restrictions of identically distributed continuous processes x(s) and x̃(s). Given a realization of
the underlying continuous process, the restriction of the process to the fine locations sx or the
coarse locations sx̃ is completely determined.

In the case when x and x̃ are both modeled a priori as restrictions of an identically
distributed continuous processes x(s) and x̃(s) the swapping is trivial. These processes
are constructed via (5) using independent copies u and ũ with common spatial locations
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su = {su
1 , . . . , s

u
` } so that

x(s) =
∑̀

k=1

ukk(s − su
k) and x̃(s) =

∑̀

k=1

ũkk(s − su
k)

with u and ũ modeled as independent N(0, I`/θ) and N(0, I`/θ̃) draws, respectively.
The gridded x essentially represents the continuous process as a piecewise constant over
pixels centered at the locations sx. Likewise x̃ represents x(s) as piecewise constants
over larger pixels centered at the coarse locations sx̃ (Figure 8).

A swap between x and x̃ can be carried out by simply exchanging the values of (u, θ)

and (ũ, θ̃). Hence, coarsening x amounts to evaluating x(s) at the coarse locations
sx̃; refining x̃ amounts to evaluating x̃(s) at the fine locations sx. Since this swap
transition is symmetric and deterministic, the acceptance probability of (6) simplifies
to a Metropolis acceptance rule. We defer to Section 3.2 to show an example of swapping
using the continuous formulation for multiple levels of coarsening.

3.2 Multi-processor implementation

Perhaps the most appealing aspect of this coupled MCMC approach is that it is read-
ily amenable to multiprocessor implementation, without having to “parallelize” the
simulator code. Multiprocessor implementation is most easily carried out by running
separate chains on the various processors, each exploring its own, possibly coarsened,
posterior formulation. These chains are then coupled by periodically proposing swaps
between the parameter values of the various chains as described in the previous section.
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As an example we consider a synthetic application similar to the 2-d application of
Section 2 where wells are laid out in an inverted nine spot pattern with a single injec-
tion well in the center surrounded by eight production wells. After a shock of tracer is
introduced at the central production well, tracer breakthrough times are recorded at
the eight production wells (Figure 9). Figure 10 shows an example of a three processor
implementation with each processor running its own chain – one sampling a coarse-scale
posterior, one sampling an intermediate-scale posterior, and one sampling a fine-scale
posterior. The multiprocessor sampler alternates between within-scale updates and
swapping updates. The within-scale updates consist of four MCMC scans of the per-
meability image at the coarse-scale, 2 scans at the intermediate-scale, and one scan at
the fine level. The swapping scans consist of proposing swaps between current perme-
ability images for each of the three possible scale pairings (coarse-intermediate, coarse-
fine, and intermediate-fine). An implementation involving 7 differnt levels of resolution
was also carried out where swaps were attempted between all levels of coarseness. The
proportion of accepted swaps are summarized in Table 1.

Though this example demonstrates a practical parallel implementation of a multi-
grid MCMC scheme, clearly a number of questions loom regarding: allocation of pro-
cessors to formulations; the choice of levels of coarseness in the auxiliary formulations;
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Figure 10. Running formulations at different scales on different processors. Three distinct
posterior distributions are obtained for the hydrology application of Section 2.2 by using different
grid sizes in the flow simulator (16× 16, 20 × 20, and 24 × 24). The three resulting posteriors
are then sampled on three distinct processors. After a within-scale update scan consisting of 4
MCMC scans on the coarse-scale formulation, 2 on the intermediate-scale, and 1 on the fine-
scale, metropolis swaps are proposed between the current realizations at each processor. This
figure shows realizations at each level of coarseness for successive within-scale updates along
with the result of the metropolis swaps between scales. Three such sequences are shown. In the
first, the arrows denote an accepted swap between the coarse and fine-scales, in the second, a
coarse-intermediate swap is accepted, in the third, an intermediate-fine swap is accepted. The
MCMC
−→ symbol denotes 3 additional within-scale update scans.

Table 1. acceptance rates of swap proposals

28 × 28 24× 24 20× 20 16 × 16 12 × 12 8× 8
32 × 32 0.86 0.70 0.39 0.13 0.01 0
28 × 28 - 0.80 0.47 0.22 0.01 0
24 × 24 - - 0.69 0.30 0.03 0
20 × 20 - - - 0.56 0.11 0
16 × 16 - - - - 0.21 0
12 × 12 - - - - - 0.01

and appropriate swapping strategies, just to name a few. We have found the guide-
lines in Geyer and Thompson (1995) and Liu and Sabatti (1999) regarding constructing
augmented chains relevant here. Future work and additional experience will give us a
better handle on such questions.
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4. DISCUSSION

Distributed computing, stingy parameterization, and augmentation with additional
fast, coarsened formulations has expanded the universe of inverse/model calibration
problems that can be handled using MCMC for posterior exploration. This is partic-
ularly relevant since distributed machines, such as relatively cheap clusters of work-
stations, are becoming more common and more accessable. Implementation of the
MCMC schemes proposed here are straightforward and require minimal knowledge in
programming for distributed architectures.

We note that the use of Geyer’s coupled MCMC could be replaced with simulated
tempering as in Geyer and Thompson, using reversible jump MCMC (Green 1995)
to handle the change in dimension that comes in moving between scales. Our use of
coupled MCMC allows us to control the amount of processing on each scale and makes
it unnecessary to compute normalizing constants.
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